5V Step-Up/Step-Down Voltage Regulator S13V30F5

This powerful synchronous switching step-up/step-down regulator efficiently produces 5 V from input voltages between 2.8 V and 22 V.

AUD$ 19.95

Special Order  

Shipping from $2.90

+156 more from our supplier in 7-10 days

Our Code: SKU-007580

Supplier Link: [Pololu MPN:4082]


Description

Overview

5V Step-Up/Step-Down Voltage Regulator S13V30F5, bottom view with dimensions.

The S13V30F5 switching regulator (also called a switched-mode power supply (SMPS) or DC-to-DC converter) uses a buck-boost topology to convert both higher and lower input voltages to a regulated 5 V output. It takes input voltages from 2.8 V to 22 V and increases or decreases them as necessary, offering a typical efficiency of over 85% and a typical output current of 3 A. The flexibility in input voltage is especially well-suited for battery-powered applications in which the battery voltage begins above 5 V and drops below as the battery discharges. Without the typical restriction on the battery voltage staying above the required voltage throughout its life, new battery packs and form factors can be considered.

The regulator has input reverse voltage protection up to 20 V, under-voltage lockout, output over-voltage protection, and over-current protection. A thermal shutdown feature also helps prevent damage from overheating and a soft-start feature limits the inrush current and gradually ramps the output voltage on startup.

5V Step-Up/Step-Down Voltage Regulator S13V30F5, top view.

Features

  • Input voltage: 2.8 V to 22 V
  • Output voltage: 5 V with 3% accuracy
  • Typical maximum continuous output current: 2 A to 4 A, depending on input voltage (see the maximum continuous output current graph below)
  • Typical efficiency of 85% to 95%, depending on input voltage and load (see the efficiency graph below)
  • 10 mA to 20 mA typical no-load quiescent current (see the quiescent current graph below); can be reduced to 2 µA to 10 µA per volt on VIN by disabling the board
  • Input under-voltage lockout and output over-voltage protection
  • Soft-start feature limits inrush current and gradually ramps output voltage
  • Integrated reverse-voltage protection up to 20 V, over-current protection, and over-temperature shutoff
  • Fixed switching frequency of ~500 kHz
  • Compact size: 0.9″ × 0.9″ × 0.38″ (22.9 mm × 22.9 mm × 9.7 mm); see the dimension diagram (294k pdf) for more information
  • Two 0.086″ mounting holes for #2 or M2 screws

5V Step-Up/Step-Down Voltage Regulator S13V30F5, side view.

Connections

The step-up/step-down regulator has four connections: enable (EN), the input voltage (VIN), ground (GND), and the output voltage (VOUT). The input voltage, VIN, powers the regulator. Voltages between 2.8 V and 22 V can be applied to VIN. VOUT is the regulated output voltage.

The regulator, which is enabled by default, can be put into a low-power sleep state by bringing the EN pin low. The rising threshold for the EN pin is between 1 V and 1.2 V, and the falling threshold is at most 160 mV lower than that (i.e. the falling hysteresis is 160 mV max). This allows a precise low-VIN cutoff to be set, such as with the output of an external voltage divider powered by VIN, which can be useful for battery powered applications where draining the battery below a particular voltage threshold could permanently damage it. The quiescent current draw in sleep mode is dominated by the current in the 475 kΩ pull-up resistor from ENABLE to VIN and in the reverse-voltage protection circuit, which altogether will be between 2 µA and 10 µA per volt on VIN.

The regulator has two sets of through-holes: five smaller holes arranged with a 0.1″ spacing along the edge of the board (for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1″ grid) and four larger holes intended for 3.5 mm-pitch terminal blocks. VIN, GND, and VOUT are available at both the smaller holes and larger holes, but EN is only available on the smaller row of through-holes.

5V Step-Up/Step-Down Voltage Regulator S13V30F5, with included hardware.

The regulator includes a 5×1 straight male header strip and two 2-pin, 3.5 mm-pitch terminal blocks, and it can be assembled with either the header or terminal blocks, not both. The 0.1″ male header can be soldered into the smaller through-holes. Alternatively, the terminal blocks can be locked together and soldered into the larger holes to allow for convenient temporary connections of unterminated wires (see our short video on terminal block installation). You can also solder wires directly to the board for the most compact installation.

5V Step-Up/Step-Down Voltage Regulator S13V30F5, on breadboard.

5V Step-Up/Step-Down Voltage Regulator S13V30F5, with terminal blocks installed.

If the terminal blocks are used, a small wire (not included) can be soldered to the enable pin as shown below, so it will not interfere with the VIN terminal block connection.

5V Step-Up/Step-Down Voltage Regulator S13V30F5, with terminal blocks and EN wire installed

5V Step-Up/Step-Down Voltage Regulator S13V30F5, using all five connections with terminal blocks installed.

Typical efficiency

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns.

Maximum continuous output current

The maximum achievable output current of the regulator varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows maximum output currents that the regulator can deliver continuously at room temperature in still air and without additional heat sinking.

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Quiescent current

The quiescent current is the current the regulator uses just to power itself, and the graph below shows this as a function of the input voltage. The module’s EN input can be driven low to put the board into a low-power state where it typically draws between 2 µA and 10 µA per volt on VIN.

Typically the quiescent current of the S13V30F5 is below 20 mA, but for input voltages between about 3 V and 3.3 V the quiescent current of some units can rise to near 100 mA. Keeping connections short and adding a capacitor of a few tens of microfarads greatly reduces this spike in quiescent current.


Specifications

Dimensions

Size: 0.9″ × 0.9″ × 0.38″1
Weight: 3.5 g2

General specifications

Minimum operating voltage: 2.8 V
Maximum operating voltage: 22 V
Continuous output current: 3 A3
Output voltage: 5 V
Reverse voltage protection?: Y4
Maximum quiescent current: 100 mA5
Output type: fixed 5V

Identifying markings

PCB dev codes: reg26a
Other PCB markings: 0J12777

Notes:

1
Without included optional headers or terminal blocks. Height with terminal blocks installed is approximately 0.5″.
2
Without included optional headers or terminal blocks.
3
Typical continuous output current at 5 V in. Actual achievable continuous output current is a function of input voltage and is limited by thermal dissipation. See the output current graph under the description tab for more information.
4
To -20 V. Connecting supplies over 20 V in reverse can damage the device.
5
While enabled with no load. Typically the quiescent current is much lower (under 20 mV). See the quiescent current graph under the description tab for more information. Can be reduced to under 1 mA using the enable pin.

Resources

Related Products